1,433 research outputs found

    Nearby SuperNova factory

    No full text

    Evidence for self-interaction of charge distribution in charge-coupled devices

    Full text link
    Charge-coupled devices (CCDs) are widely used in astronomy to carry out a variety of measurements, such as for flux or shape of astrophysical objects. The data reduction procedures almost always assume that ther esponse of a given pixel to illumination is independent of the content of the neighboring pixels. We show evidence that this simple picture is not exact for several CCD sensors. Namely, we provide evidence that localized distributions of charges (resulting from star illumination or laboratory luminous spots) tend to broaden linearly with increasing brightness by up to a few percent over the whole dynamic range. We propose a physical explanation for this "brighter-fatter" effect, which implies that flatfields do not exactly follow Poisson statistics: the variance of flatfields grows less rapidly than their average, and neighboring pixels show covariances, which increase similarly to the square of the flatfield average. These covariances decay rapidly with pixel separation. We observe the expected departure from Poisson statistics of flatfields on CCD devices and show that the observed effects are compatible with Coulomb forces induced by stored charges that deflect forthcoming charges. We extract the strength of the deflections from the correlations of flatfield images and derive the evolution of star shapes with increasing flux. We show for three types of sensors that within statistical uncertainties,our proposed method properly bridges statistical properties of flatfields and the brighter-fatter effect

    The DICE calibration project: design, characterization, and first results

    Full text link
    We describe the design, operation, and first results of a photometric calibration project, called DICE (Direct Illumination Calibration Experiment), aiming at achieving precise instrumental calibration of optical telescopes. The heart of DICE is an illumination device composed of 24 narrow-spectrum, high-intensity, light-emitting diodes (LED) chosen to cover the ultraviolet-to-near-infrared spectral range. It implements a point-like source placed at a finite distance from the telescope entrance pupil, yielding a flat field illumination that covers the entire field of view of the imager. The purpose of this system is to perform a lightweight routine monitoring of the imager passbands with a precision better than 5 per-mil on the relative passband normalisations and about 3{\AA} on the filter cutoff positions. The light source is calibrated on a spectrophotometric bench. As our fundamental metrology standard, we use a photodiode calibrated at NIST. The radiant intensity of each beam is mapped, and spectra are measured for each LED. All measurements are conducted at temperatures ranging from 0{\deg}C to 25{\deg}C in order to study the temperature dependence of the system. The photometric and spectroscopic measurements are combined into a model that predicts the spectral intensity of the source as a function of temperature. We find that the calibration beams are stable at the 10−410^{-4} level -- after taking the slight temperature dependence of the LED emission properties into account. We show that the spectral intensity of the source can be characterised with a precision of 3{\AA} in wavelength. In flux, we reach an accuracy of about 0.2-0.5% depending on how we understand the off-diagonal terms of the error budget affecting the calibration of the NIST photodiode. With a routine 60-mn calibration program, the apparatus is able to constrain the passbands at the targeted precision levels.Comment: 25 pages, 27 figures, accepted for publication in A&

    Analytical investigation of correlated charge collection in CCDs

    Get PDF
    Correlated charge collection phenomena in CCD sensors are presently of interest due to their potentially major implications in space and ground based astronomy missions. These effects may manifest as a signal dependent Point Spread Function (PSF), or as a nonlinearity in the Photon Transfer Curve (PTC). We present the theoretical background to a simple analytical model based on previously published solutions of Poisson's equation which aims to aid conceptual understanding of how various device parameters relate to the magnitude of correlated charge collection. We separate correlated charge collection into two components - firstly excess diffusion caused by increasing drift time as the electric field in the device decreases, which is isotropic, and secondly anisotropic pixel boundary shifting as the fringing field in the parallel transfer direction collapses. Equations are presented which can be solved numerically to give reasonable detail, or solved analytically using simplifying approximations

    Initial Hubble Diagram Results from the Nearby Supernova Factory

    Full text link
    The use of Type Ia supernovae as distance indicators led to the discovery of the accelerating expansion of the universe a decade ago. Now that large second generation surveys have significantly increased the size and quality of the high-redshift sample, the cosmological constraints are limited by the currently available sample of ~50 cosmologically useful nearby supernovae. The Nearby Supernova Factory addresses this problem by discovering nearby supernovae and observing their spectrophotometric time development. Our data sample includes over 2400 spectra from spectral timeseries of 185 supernovae. This talk presents results from a portion of this sample including a Hubble diagram (relative distance vs. redshift) and a description of some analyses using this rich dataset.Comment: Short version of proceedings for ICHEP08, Philadelphia PA, July 2008; see v1 for full-length versio

    The Nearby Supernova Factory

    Get PDF
    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03<z<0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review

    QCD corrections to the forward-backward asymmetries of cc and bb quarks at the Z pole

    Get PDF
    Measurements of the forward-backward production asymmetry of heavy quarks in Z decays provide a precise determination of \swsqeffl . The asymmetries are sensitive to QCD effects, in particular hard gluon radiation. In this paper QCD corrections for \AFBbb~ and \AFBcc~ are discussed. The interplay between the experimental techniques used to measure the asymmetries and the QCD effects is investigated using simulated events. A procedure to estimate the correction needed for experimental measurements is proposed, and some specific examples are given

    Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H{\alpha}

    Full text link
    (Abridged) We study the host galaxy regions in close proximity to Type Ia supernovae (SNe Ia) to analyze relations between the properties of SN Ia events and environments most similar to where their progenitors formed. We focus on local H\alpha\ emission as an indicator of young environments. The Nearby Supernova Factory has obtained flux-calibrated spectral timeseries for SNe Ia using integral field spectroscopy, allowing the simultaneous measurement of the SN and its immediate vicinity. For 89 SNe Ia we measure H\alpha\ emission tracing ongoing star formation within a 1 kpc radius around each SN. This constitutes the first direct study of the local environment for a large sample of SNe Ia also having accurate luminosity, color and stretch measurements. We find that SNe Ia with local H\alpha\ emission are redder by 0.036+/-0.017 mag, and that the previously-noted correlation between stretch and host mass is entirely driven by the SNe Ia coming from passive regions. Most importantly, the mean standardized brightness for SNe Ia with local H\alpha\ emission is 0.094+/-0.031 mag fainter than for those without. This offset arises from a bimodal structure in the Hubble residuals, that also explains the previously-known host-mass bias. We combine this bimodality with the cosmic star-formation rate to predict changes with redshift in the mean SN Ia brightness and the host-mass bias. This change is confirmed using high-redshift SNe Ia from the literature. These environmental dependences point to remaining systematic errors in SNe Ia standardization. The observed brightness offset is predicted to cause a significant bias in measurements of the dark energy equation of state. Recognition of these effects offers new opportunities to improve SNe Ia as cosmological probes - e.g. SNe Ia having local H\alpha\ emission are more homogeneous, having a brightness dispersion of 0.105+/-0.012 mag.Comment: accepted for publication in Section 3. Cosmology of A&A (The official date of acceptance is 30/08/2013
    • 

    corecore